Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.547
Filtrar
1.
Physiol Rep ; 12(7): e15995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561245

RESUMO

Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.


Assuntos
Resistência à Insulina , Obesidade , Adulto , Humanos , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Gordura Subcutânea/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Expressão Gênica , Tecido Adiposo/metabolismo
2.
Front Immunol ; 15: 1360065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558823

RESUMO

Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.


Assuntos
Mitocôndrias , Polifenóis , Humanos , Polifenóis/farmacologia , Mitocôndrias/metabolismo , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo
3.
Gen Comp Endocrinol ; 352: 114516, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593942

RESUMO

Cortisol is secreted from the adrenal cortex in response to stress, and its circulating levels are used as robust physiological indicators of stress intensity in various animals. Cortisol is also produced locally in adipose tissue by the conversion of steroid hormones such as cortisone, which is related to fat accumulation. Circulating cortisol levels, probably induced by cold stress, increase in cetaceans under cold conditions. However, whether cortisol production in subcutaneous adipose tissue is enhanced when fat accumulation is renewed during the cold season remains unclear. Therefore, in this study, we examine the effect of environmental temperature on the expression of cortisol synthesis-related enzymes and a glucocorticoid receptor in the subcutaneous fat (blubber) and explore the association between these expressions and fluctuations in circulating cortisol levels in common bottlenose dolphins (Tursiops truncatus). Skin biopsies were obtained seasonally from eight female dolphins, and seasonal differences in the expression of target genes in the blubber were analyzed. Blood samples were collected throughout the year, and cortisol levels were measured. We found that the expressions of cytochrome P450 family 21 subfamily A member 2 (CYP21A2) and nuclear receptor subfamily 3 group C member 1 (NR3C1), a glucocorticoid receptor, were increased in the cold season, and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) showed a similar trend. Blood cortisol levels increased when the water temperature decreased. These results suggest that the conversion of 17-hydroxyprogesterone to cortisol via 11-deoxycortisol and/or of cortisone to cortisol is enhanced under cold conditions, and the physiological effects of cortisol in subcutaneous adipose tissue may contribute to on-site lipid accumulation and increase the circulating cortisol concentrations. The results obtained in this study highlight the role of cortisol in the regulation of the blubber that has developed to adapt to aquatic life.


Assuntos
Golfinho Nariz-de-Garrafa , Cortisona , Animais , Feminino , Hidrocortisona/metabolismo , Estações do Ano , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Cortisona/metabolismo , Tecido Adiposo/metabolismo
4.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
5.
Front Immunol ; 15: 1381227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638434

RESUMO

Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
6.
Immun Inflamm Dis ; 12(4): e1241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629728

RESUMO

BACKGROUND: Inflammation in adipose tissue, resulting from imbalanced caloric intake and energy expenditure, contributes to the metabolic dysregulation observed in obesity. The production of inflammatory cytokines, such as IL-1ß and IL-18, plays a key role in this process. While IL-1ß promotes insulin resistance and diabetes, IL-18 regulates energy expenditure and food intake. Previous studies have suggested that caspase-1, activated by the Nlrp3 inflammasome in response to lipid excess, mediates IL-1ß production, whereas activated by the Nlrp1b inflammasome in response to energy excess, mediates IL-18 production. However, this has not been formally tested. METHODS: Wild-type and caspase-1-deficient Balb/c mice, carrying the Nlrp1b1 allele, were fed with regular chow or a high-fat diet for twelve weeks. Food intake and mass gain were recorded weekly. At the end of the twelve weeks, glucose tolerance and insulin resistance were evaluated. Mature IL-18 protein levels and the inflammatory process in the adipose tissue were determined. Fasting lipid and cytokine levels were quantified in the sera of the different experimental groups. RESULTS: We found that IL-18 production in adipose tissue is independent of caspase-1 activity, regardless of the metabolic state, while Nlrp3-mediated IL-1ß production remains caspase-1 dependent. Additionally, caspase-1 null Balb/c mice did not develop metabolic abnormalities in response to energy excess from the high-fat diet. CONCLUSION: Our findings suggest that IL-18 production in the adipose tissue is independent of Nlrp3 inflammasome and caspase-1 activation, regardless of caloric food intake. In contrast, Nlrp3-mediated IL-1ß production is caspase-1 dependent. These results provide new insights into the mechanisms underlying cytokine production in the adipose tissue during both homeostatic conditions and metabolic stress, highlighting the distinct roles of caspase-1 and the Nlrp inflammasomes in regulating inflammatory responses.


Assuntos
Resistência à Insulina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Interleucina-18 , Caspase 1/genética , Caspase 1/metabolismo , Caspases/metabolismo , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Lipídeos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38581357

RESUMO

Fat is the main component of an adult bone marrow and constitutes the so-called bone marrow adipose tissue (BMAT). Marrow adipocytes, which are the fat cells in the bone marrow, become more abundant with age, and may influence the whole-body metabolism. In osteoporotic patients, the amount of BMAT has an inverse correlation with the amount of bone mass. In people with anorexia nervosa that lose weight after the reduction of peripheral adipose tissues, BMAT expands. Although bone marrow adipocytes are increasingly recognized as a target for therapy, there is still much to learn about their role in skeletal homeostasis, metabolism, cancer, and regenerative treatments. The Bone Marrow Adiposity Society (BMAS), established in 2017, aims to enhance the understanding of how BMAT relates to bone health, cancer, and systemic metabolism. BMAS is committed to training young scientists and organized the second edition of the BMAS Summer School, held on September 4-6, 2023, as a virtual event.


Assuntos
Medula Óssea , Neoplasias , Humanos , Medula Óssea/metabolismo , Adiposidade , Tecido Adiposo/metabolismo , Instituições Acadêmicas , Neoplasias/metabolismo
8.
Am J Physiol Cell Physiol ; 326(4): C1248-C1261, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581663

RESUMO

Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.


Assuntos
Tecido Adiposo , Gordura Subcutânea , Humanos , Feminino , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Análise de Sequência de RNA , Colesterol/metabolismo
9.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474830

RESUMO

Obesity is defined as excess adipose tissue; however, commonly used methods may under-detect adiposity in adolescents. This study compared the performance of body mass index percentile (BMI%) and relative body mass index (RBMI) in identifying excess body fat percentage (BF%) and estimated RBMI cut points to better stratify severity of adiposity. In 567 adolescents ages 11-19 year, BF% measured by DXA was used to compare BMI% and RBMI performance at different degrees of adiposity. RBMI cut points for adiposity detection were derived via ROC curve analysis. BF% was strongly correlated with BMI% (r = 0.889, p < 0.001) and RBMI (r = 0.901, p < 0.001). However, RBMI exhibited less dispersion and better discriminated the relationship with BF% independent of age, race, and gender. Both BMI% and RBMI performed similarly for detecting high BF% (≥25 BF% in males; ≥30 BF% in females). Nonetheless, the relationship of BMI% with BF% was diminished among leaner adolescents. RBMI detected overweight in 21.3% more females and 14.2% more males. RBMI improved the detection of excess adiposity in individuals otherwise classified as having normal weight or overweight by BMI%. RBMI is a valuable and accessible tool for earlier detection, intervention, and effective follow-up of excess adiposity in youth at higher risk for complications.


Assuntos
Adiposidade , Sobrepeso , Masculino , Feminino , Adolescente , Humanos , Índice de Massa Corporal , Sobrepeso/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Absorciometria de Fóton , Composição Corporal
10.
Physiol Rep ; 12(6): e15957, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38546216

RESUMO

Epicardial adipose tissue (EAT) is an active endocrine organ that is closely associated with occurrence of atrial fibrillation (AF). However, the role of EAT in the development of postoperative AF (POAF) remains unclear. We aimed to investigate the association between EAT profile and POAF occurrence in patients who underwent cardiovascular surgery. We obtained EAT samples from 53 patients to evaluate gene expression, histological changes, mitochondrial oxidative phosphorylation (OXPHOS) capacity in the EAT, and protein secretion in EAT-conditioned medium. EAT volume was measured using computed tomography scan. Eighteen patients (34%) experienced POAF within 7 days after surgery. Although no significant difference was observed in EAT profile between patients with and without POAF, logistic regression analysis identified that the mRNA expression levels of tumor necrosis factor-alpha (TNF-α) were positively correlated and adipocyte size in the EAT was inversely correlated with onset of POAF, respectively. Mitochondrial OXPHOS capacity in the EAT was not associated with POAF occurrence; however, it showed an inverse correlation with adipocyte size and a positive correlation with adiponectin secretion. In conclusion, changes in the secretory profile and adipocyte morphology of the EAT, which represent qualitative aspects of the adipose tissue, were present before the onset of AF.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/metabolismo , 60428 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Pericárdio/metabolismo
11.
Clin Sci (Lond) ; 138(6): 371-385, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469619

RESUMO

Browning of white adipose tissue is hallmarked by increased mitochondrial density and metabolic improvements. However, it remains largely unknown how mitochondrial turnover and quality control are regulated during adipose browning. In the present study, we found that mice lacking adipocyte FoxO1, a transcription factor that regulates autophagy, adopted an alternate mechanism of mitophagy to maintain mitochondrial turnover and quality control during adipose browning. Post-developmental deletion of adipocyte FoxO1 (adO1KO) suppressed Bnip3 but activated Fundc1/Drp1/OPA1 cascade, concurrent with up-regulation of Atg7 and CTSL. In addition, mitochondrial biogenesis was stimulated via the Pgc1α/Tfam pathway in adO1KO mice. These changes were associated with enhanced mitochondrial homeostasis and metabolic health (e.g., improved glucose tolerance and insulin sensitivity). By contrast, silencing Fundc1 or Pgc1α reversed the changes induced by silencing FoxO1, which impaired mitochondrial quality control and function. Ablation of Atg7 suppressed mitochondrial turnover and function, causing metabolic disorder (e.g., impaired glucose tolerance and insulin sensitivity), regardless of elevated markers of adipose browning. Consistently, suppression of autophagy via CTSL by high-fat diet was associated with a reversal of adO1KO-induced benefits. Our data reveal a unique role of FoxO1 in coordinating mitophagy receptors (Bnip3 and Fundc1) for a fine-tuned mitochondrial turnover and quality control, underscoring autophagic clearance of mitochondria as a prerequisite for healthy browning of adipose tissue.


Assuntos
Resistência à Insulina , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
12.
Scand J Med Sci Sports ; 34(4): e14612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545946

RESUMO

INTRODUCTION: Liver fat (LF) and visceral adipose tissue (VAT) content decreases with training, however, this has mainly been investigated in sedentary obese or healthy participants. The aim of this study was to investigate the effects of repeated prolonged exercise on LF and VAT content in well-trained older men and to compare baseline LF and VAT content to recreationally active older men. METHOD: A group of five well-trained older men were tested before and after cycling a total distance of 2558 km in 16 consecutive days. VAT content and body composition was measured using DXA before a bicycle ergometer test was performed to determine maximal fat oxidation (MFO), maximal oxygen consumption ( VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ ), and the relative intensity at which MFO occurred (Fatmax). LF content was measured on a separate day using MRI. For comparison of baseline values, a control group of eight healthy age- and BMI-matched recreationally active men were recruited. RESULTS: The well-trained older men had lower VAT (p = 0.02), and a tendency toward lower LF content (p = 0.06) compared with the control group. The intervention resulted in decreased LF content (p = 0.02), but VAT, fat mass, and lean mass remained unchanged. VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ , MFO, and Fatmax were not affected by the intervention. CONCLUSION: The study found that repeated prolonged exercise reduced LF content, but VAT and VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ remained unchanged. Aerobic capacity was aligned with lower LF and VAT in older active men.


Assuntos
Exercício Físico , Gordura Intra-Abdominal , Masculino , Humanos , Idoso , Obesidade/metabolismo , Fígado/diagnóstico por imagem , Teste de Esforço , Tecido Adiposo/metabolismo , Consumo de Oxigênio
13.
Nutr Cancer ; 76(5): 404-418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38546174

RESUMO

Cachexia is an irreversible condition that involves a significant loss of body weight, muscle mass, and adipose tissue. It is a complex condition that involves a variety of metabolic, hormonal, and immune-related factors, with the precise mechanisms not yet fully understood. In this review, the prevalence of cachexia in different types of cancer as well as the potential risk factors was evaluated from literature retrieved from databases such as ScienceDirect, PubMed and Scopus. Potential risk factors evaluated here include tumor-related factors such as location, and stage of the cancer, as well as patient-related factors such as age, gender, and comorbidities. Several findings were observed where cachexia is more prevalent in male cancer patients than females, with higher incidences of weight loss and poorer outcomes. This may be due to the different muscle compositions between gender. Additionally, cachexia is more prevalent at the later stages, which may be brought about by the late-stage diagnosis of certain cancers. The anatomical location of certain cancers such as the pancreas and stomach may play a significant factor in their high prevalence of cachexia. These are sites of the synthesis of digestive enzymes and hormones regulating appetite. Cachexia is an issue faced by cancer patients which could affect their recovery. However, it is poorly understood, which limit therapeutic options. Hence, understanding this disease from different perspectives (clinical and pre-clinical), and bridging those findings could further improve our comprehension and consequently improve therapeutic options.


Assuntos
Caquexia , Neoplasias , Feminino , Humanos , Masculino , Caquexia/epidemiologia , Caquexia/etiologia , Prevalência , Neoplasias/metabolismo , Tecido Adiposo/metabolismo , Fatores de Risco
14.
Nat Commun ; 15(1): 2779, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555350

RESUMO

Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.


Assuntos
Resistência à Insulina , Obesidade , Masculino , Camundongos , Animais , Obesidade/complicações , Obesidade/genética , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisossomos/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
15.
J Oleo Sci ; 73(4): 411-418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556276

RESUMO

In 2021, we published three papers related to the anti-inflammatory effects of food ingredients. The present paper reports the effects of vitamin E homologs and sweet basil powder. In these papers, we investigated whether inflammation occurs in the adipose tissue of mice fed a high-fat and high-sucrose diet for 16 weeks. Inflammatory cytokine gene expression was significantly higher in the epididymal fat of the high-fat and high-sucrose diet group than in that of the control diet group. However, the addition of α-tocopherol or δ-tocopherol to the diet could not restrain the inflammation of mice epididymal fats. Thereafter, we investigated the anti-inflammatory effects of α- and δ-tocopherols using the co-cultured cells. Consequently, we clarified that δ-tocopherol inhibited the increase in the gene expressions of inflammatory cytokines. We also examined the effect of sweet basil powder on a similar obese mice model. The final body weight in the high-fat and high-sucrose group that received sweet basil powder was significantly lower than that in the high-fat and high-sucrose diet group. Liver weights were also significantly lower in the high-fat and high-sucrose diet group that received sweet basil powder than in the high-fat and high-sucrose diet group, although adipose tissue weights were unchanged in both groups. Furthermore, sweet basil powder tended to inhibit in lipid synthesis in the mice livers. Therefore, we suggested that sweet basil powder inhibited fatty acid synthesis in mice livers, thereby suppressing liver enlargement, and resulting in body weight loss. Moreover, the gene expression of MCP-1 in the adipose tissue of mice fed a high-fat and high-sucrose diet added with sweet basil powder was significantly lower than that of mice fed a high-fat and high-sucrose diet for 12 weeks. Therefore, sweet basil powder inhibited inflammation onset in the adipose tissue of mice. Taken together, the results suggested that food ingredients, especially vitamin E homologs and sweet basil powder, have anti-inflammatory effects on mice adipose tissue and mice adipocyte-induced inflammation.


Assuntos
Ingredientes de Alimentos , Camundongos , Animais , Pós , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/genética , Citocinas/metabolismo , Sacarose , Vitamina E/farmacologia , Vitamina E/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
16.
ACS Nano ; 18(13): 9311-9330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498418

RESUMO

In obesity, the interactions between proinflammatory macrophages and adipocytes in white adipose tissues are known to play a crucial role in disease progression by providing inflammatory microenvironments. Here, we report that the functional nanoparticle-mediated modulation of crosstalk between adipocytes and macrophages can remodel adipocyte immune microenvironments. As a functional nanomodulator, we designed antivascular cell adhesion molecule (VCAM)-1 antibody-conjugated and amlexanox-loaded polydopamine nanoparticles (VAPN). Amlexanox was used as a model drug to increase energy expenditure. Compared to nanoparticles lacking antibody modification or amlexanox, VAPN showed significantly greater binding to VCAM-1-expressing adipocytes and lowered the interaction of adipocytes with macrophages. In high fat diet-fed mice, repeated subcutaneous administration of VAPN increased the populations of beige adipocytes and ameliorated inflammation in white adipose tissues. Moreover, the localized application of VAPN in vivo exerted a systemic metabolic effect and reduced metabolic disorders, including insulin tolerance and liver steatosis. These findings suggested that VAPN had potential to modulate the immune microenvironments of adipose tissues for the immunologic treatment of obesity. Although we used amlexanox as a model drug and anti-VCAM-1 antibody in VAPN, the concept of immune nanomodulators can be widely applied to the immunological treatment of obesity.


Assuntos
Adipócitos Bege , Tecido Adiposo , Aminopiridinas , Camundongos , Animais , Tecido Adiposo/metabolismo , Tecido Adiposo Branco , Obesidade/tratamento farmacológico , Adipócitos Bege/metabolismo , Camundongos Endogâmicos C57BL
17.
Stem Cell Res Ther ; 15(1): 91, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539224

RESUMO

Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineering-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summarized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskeletal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accelerate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.


Assuntos
Tecido Adiposo , Exossomos , Tecido Adiposo/metabolismo , Adipócitos , Regeneração , Materiais Biocompatíveis , Exossomos/metabolismo , Células-Tronco/metabolismo
18.
Biomolecules ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540669

RESUMO

Browning of white adipose tissue (WAT) is a focus of research in type 2 diabetes mellitus (T2DM) and metabolism, which may be a potential molecular mechanism for high-intensity interval training (HIIT) to improve T2DM. In this study, male C57BL/6J wild-type mice were subjected to an 8-week HIIT regimen following T2DM induction through a high-fat diet (HFD) combined with streptozotocin (STZ) injection. We found that HIIT improved glucose metabolism, body weight, and fat mass in T2DM mice. HIIT also decreased adipocyte size and induced browning of WAT. Our data revealed a decrease in TNFα and an increase in IL-10 with HIIT, although the expression of chemokines MCP-1 and CXCL14 was increased. We observed increased pan-macrophage infiltration induced by HIIT, along with a simultaneous decrease in the expression of M1 macrophage markers (iNOS and CD11c) and an increase in M2 macrophage markers (Arg1 and CD206), suggesting that HIIT promotes M2 macrophage polarization. Additionally, HIIT upregulated the expression of Slit3 and neurotrophic factors (BDNF and NGF). The expression of the sympathetic marker tyrosine hydroxylase (TH) and the nerve growth marker GAP43 was also increased, demonstrating the promotion of sympathetic nerve growth and density by HIIT. Notably, we observed macrophages co-localizing with TH, and HIIT induced the accumulation of M2 macrophages around sympathetic nerves, suggesting a potential association between M2 macrophages and increased density of sympathetic nerves. In conclusion, HIIT induces adipose tissue browning and improves glucose metabolism in T2DM mice by enhancing M2 macrophage polarization and promoting sympathetic nerve growth and density.


Assuntos
Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo
19.
Cell Rep ; 43(3): 113963, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492218

RESUMO

T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.


Assuntos
Tecido Adiposo , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Células-Tronco/metabolismo
20.
Cell Rep ; 43(3): 113955, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507414

RESUMO

Epicardial adipose tissue (eAT) is a metabolically active fat depot that has been associated with a wide array of cardiac homeostatic functions and cardiometabolic diseases. A full understanding of its diverse physiological and pathological roles is hindered by the dearth of animal models. Here, we show, in the heart of an ectothermic teleost, the zebrafish, the existence of a fat depot localized underneath the epicardium, originating from the epicardium and exhibiting the molecular signature of beige adipocytes. Moreover, a subset of adipocytes within this cardiac fat tissue exhibits primitive thermogenic potential. Transcriptomic profiling and cross-species analysis revealed elevated glycolytic and cardiac homeostatic gene expression with downregulated obesity and inflammatory hallmarks in the teleost eAT compared to that of lean aged humans. Our findings unveil epicardium-derived beige fat in the heart of an ectotherm considered to possess solely white adipocytes for energy storage and identify pathways that may underlie age-driven remodeling of human eAT.


Assuntos
Tecido Adiposo Bege , Peixe-Zebra , Animais , Humanos , Idoso , Tecido Adiposo Bege/metabolismo , 60428 , Tecido Adiposo/metabolismo , Pericárdio/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...